Midterm Exam - Numerical Computing B. Math I

22 February, 2024
(i) Duration of the exam is 3 hours.
(ii) The maximum number of points you can score in the exam is 90 (total $=$ 95).
(iii) You are not allowed to consult any notes or external sources for the exam.

Name: \qquad
Roll Number: \qquad

1. Write down the output of the following commands in Octave:
(a) (2 points) linspace $(-3,4,6)^{\prime}$;
(b) (3 points) $x(2,:)$ and $x(:, 2)$ if $x=$ reshape $(1: 9,3,3)$;
(c) (3 points) polyval([1-3 2], [2 3])
(d) $(4$ points $)(\text { ones }(2,4) \text {-eye }(2,4))^{*} \operatorname{diag}(2: 5) *($ ones $(4,2)$-eye $(4,2))$
(e) (4 points) $\mathrm{A}=[12 ; 34] ; \mathrm{B}=[10 ; 01] ; \operatorname{disp}(\mathrm{A} . * \mathrm{~B}) ; \operatorname{disp}(\mathrm{A}$ * B$)$

Total for Question 1: 16
2. Write down a command or a short code in Octave to achieve the following goals:
(a) (5 points) Display real part, imaginary part and conjugate of a complex number z. Display transpose of a matrix A over complex numbers.
(b) (4 points) Display the plot of the function $f(x)=\sin (x)+e^{x}$ for x between $-\pi$ and π.
(c) (5 points) Find the point(s) of local minima of the polynomial $x^{3}-3 x^{2}+2 x-1$.

Total for Question 2: 14
3. (15 points) Let $f:[0,1] \rightarrow[0,1]$ be a continuously differentiable function such that $\left|f^{\prime}(x)\right|<\frac{1}{2}$ for all $x \in[0,1]$. Prove (from first principles) that for any $x_{0} \in[0,1]$, the sequence defined inductively as $x_{n+1}=f\left(x_{n}\right), n=1,2, \ldots$, converges to a fixed point of f.

Total for Question 3: 15
4. For each of the following equations, determine an iteration function (and an interval $I)$ so that the conditions of the contraction mapping fixed-point theorem are satisfied (assume that it is desired to find the smallest positive root):
(a) (7 points) $x^{3}-x-1=0$
(b) (8 points) $e^{-x}-\cos x=0$.

Total for Question 4: 15
5. (10 points) In the bisection method, let M denote the length of the interval $\left[a_{0}, b_{0}\right]$. Let $\left(x_{0}, x_{1}, x_{2}, \ldots,\right)$ represent the successive midpoints generated by the bisection method. Show that

$$
\left|x_{i+1}-x_{i}\right|=\frac{M}{2^{i+2}} .
$$

Also show that the number of iterations, N, required to guarantee an approximation to a root to an accuracy ε is given by

$$
N>-2-\frac{\log (\varepsilon / M)}{\log 2}
$$

Total for Question 5: 10
6. (a) (10 points) The divide and average method, an old-time method for approximating the square root of any positive number a, can be formulated via the iterative sequence,

$$
x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{a}{x_{n}}\right) .
$$

Show that this formula is based on the Newton-Raphson method, and converges for any initial value $x_{0}>0$.
(b) (15 points) A calculator is defective: it can only add, subtract, and multiply. Let $a>0$. Use the Newton-Raphson Method, and the defective calculator to devise an algorithm to compute $1 / a$ correct to a desired precision level. (Hint: Solve $x-\frac{1}{a}=0$)

Total for Question 6: 25

